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Abstract—Many scientific applications are conceptually built
up from independent component tasks as a parameter study,
optimization, or other search. Large batches of these tasks
may be executed on high-end computing systems; however, the
coordination of the independent processes, their data, and their
data dependencies is a significant scalability challenge. Many
problems must be addressed, including load balancing, data dis-
tribution, notifications, concurrent programming, and linking to
existing codes. In this work, we present Swift/T, a programming
language and runtime that enables the rapid development of
highly concurrent, task-parallel applications. Swift/T is composed
of several enabling technologies to address scalability challenges,
offers a high-level optimizing compiler for user programming
and debugging, and provides tools for binding user code in
C/C++/Fortran into a logical script. In this work, we describe
the Swift/T solution and present scaling results from the IBM
Blue Gene/P and Blue Gene/Q.

I. INTRODUCTION

Many important application classes that are driving the
requirements for extreme-scale systems—branch and bound,
stochastic programming, materials by design, uncertainty
quantification—can be productively expressed as many-task
dataflow programs. High-level dataflow languages are com-
monly used to solve coarse-grained problems in systems
programming and scientific computing. The dataflow pro-
gramming model of the Swift parallel scripting language can
elegantly express, through implicit parallelism, the massive
concurrency demanded by these applications while retaining
the productivity benefits of a high-level language.

We present here Swift/T, a new dataflow language im-
plementation designed for extreme scalability. Its technical
innovations include a distributed dataflow engine that balances
program evaluation across massive numbers of nodes using
dataflow-driven task execution and a distributed data store
for global data access. The Swift/T compiler translates the
user script into a fully scalable, decentralized MPI program
through the use of enabling libraries. Swift/T further extends
the Swift dataflow programming model of external executables
with file-based data passing to finer-grained applications using
in-memory functions and in-memory data. It directly addresses
the intertwined programmability and scalability requirements
of systems with massive concurrency with a programming
model that may also be attractive and feasible for systems
of much lower scale.

We evaluate the performance and programmability of
Swift/T for common patterns in distributed computing that

make up stress tests of language constructs in Swift/T. Ad-
ditionally, we evaluate a graph analysis and optimization
application. Our tests show that Swift/T can already scale
to 128K compute cores with high efficiency. This enables
Swift/T to provide a scalable parallel programming model
for productively expressing the outer levels of highly-parallel
many-task applications.

. Start
1 }nt X = 1000, Y = 1000; Outer
2 int A[][]; Loops
3 int B[]; Inner
4 | foreach x in [0:X-1] { Loops
5 | foreach y in [0:Y-1] { check()
6 if (check(x, y)) { then / else
7 Alx]ly] = g(E(x),£(¥)); g,

Task
8 } else { gData
9 Alx] [yl = 0; g0
o 3 sum() o
11 | B[x] = sum(A[x]); — Data
2]} wait/write
Fig. 1. A simple dataflow application

The benefits of these advances are illustrated by considering
the Swift code fragment in Figure 1. In Swift/T, the tasks that
the user intends to run may be defined as “leaf tasks”, which
have a functional syntax. The implicit parallelism of this code
generates 1 million concurrent executions of the inner block
of expressions, invoking millions of leaf tasks. The Swift/T
architecture distributes the evaluation of the outer loop to many
processors, each of which can in turn distribute the inner loop
to many additional processors. This innovation removes the
single-node evaluation bottleneck and enables Swift programs
to execute with far greater scalability. The diagram on the right
illustrates how evaluation of the entire program — not just the
leaf tasks at the leaves of the call graph — can spread through
a parallel system and utilize many nodes to rapidly generate
massive numbers of concurrent leaf tasks. Thus, this greatly
exceeds the scalability of the system beyond that of a task
management system based on a single node.

The new Swift/T system is well suited for an emerging class
of “many task” applications with the following characteristics:

Non-trivial coordination and data dependencies between
tasks, for example with arbitrary directed acyclic graph (DAG)
dataflow patterns where dataflow-driven task execution can
maximize concurrency. In Swift, the dataflow specification
comes not from a static DAG but from the dynamic evaluation
of programs written in a concurrent, expressive language.
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Irregular or unpredictable computational structure. Many
real-world task-parallel problems with irregular structure de-
feat simple load-balancing approaches because of variable task
runtimes, complex dependencies, or irregular data structures.
Robust and highly-tuned dynamic load balancing of tasks is
essential, but challenging to implement from scratch. Addi-
tionally, the underlying load balancer used here offers features
not typically available, which are available to Swift/T.

Orchestration of large application codes. Many applica-
tions can be expressed naturally by composing complex exe-
cutable programs or library functions using implicitly parallel
dataflow. This development methodology enables rapid devel-
opment and modification of applications, with performance-
critical code expressed in lower-level languages.

As shown in Figure 2, a Swift/T application consists of a
Swift/T script and some number of user code “extensions”
coded in a native programming language. These consume
and produce data in native types, such as integers, floats,
pointers to byte data, etc. Swift/T wrappers, which may be
automatically generated, allow these extensions to be executed
by the runtime. Thus, the user may produce a massively
concurrent program without writing MPI directly.

Producing the system involved solving multiple technical
challenges. First, the coordination of the Swift/T task/data
management cannot be performed on a single node (indeed,
as other systems have shown, task management itself at
scale must be distributed). Our solution is the development
of a distributed future store which manages data operations
and notification primitives in a fully decentralized manner.
Additionally, the high-level Swift language must be compiled
to use this unique runtime. Our STC optimizing compiler
performs this translation in a novel manner.

The contributions of this work, in which we address the
challenges of enabling practical, high-level dataflow program-
ming on large scale, massively multi-node systems, are as
follows.

o We describe the characteristics of many-task applications
that can benefit from extreme-scale systems (§ II);

o We describe previous related work (§ III);

e We describe the Swift/T programming model and its
relation to the runtime system (§ IV, § V);

« We present performance results from common application
patterns and a real scientific application that show that the
scalability challenges have been overcome (§ VI).

II. MOTIVATING APPLICATIONS

To demonstrate the value of a highly scalable implementa-
tion of the Swift programming language, we present several
many-task applications with massive concurrency that have
been conveniently expressed as parallel Swift scripts.

A. Scientific collaboration graph analysis

Analysis of graphs of collaboration between scientists is
an important first step in enabling the automated discovery of
hypotheses or facts [1]. The SciColSim application optimizes a
stochastic graph-based model of collaboration by fitting model
parameters to actual data mined from publication author lists
and other indicators of collaboration.

A simulated annealing algorithm [2] is used to explore the
parameter space and improve the fit between model and obser-
vation. Pseudo-code for this application is shown in Figure 3.
The evolve function runs an instance of the stochastic model
in order to measure goodness of fit. A production run makes
~10 million evolve calls. Scaling up the application is not
trivial, since frequent synchronization is required to aggregate
results of parallel tasks and make control-flow decisions, and
highly variable task times force frequent load balancing.

1 foreach i in innovation_values { // o~ 20
2 foreach r in repeats { // 15

3 iterate cycle in annealing_cycles { // ~ 100
4 iterate p in params { // 3

5 foreach n in reruns { // 1000
6 evolve(...); // 0.1to 60 seconds

7 388!

Fig. 3. Loop structure of SciColSim application in Swift. foreach indicates
a parallel loop and iterate a sequential loop

B. Power grid design

Branch and bound algorithms arise in discrete optimization
problems: for example, in power grid design optimization us-
ing Mixed-Integer Nonlinear Programs [3]. These algorithms
recursively subdivide a search space, creating many branches.
Branches are pruned once they are of no further interest, for
example if they are infeasible or sub-optimal. Detecting sub-
optimality may involve shared upper or lower bounds that
are updated throughout execution. In parallel implementations,
communication is required to share updated bounds between
branches. Branch and bound computations are often irregular
since the evolution of the search process is unpredictable, so
frequent load balancing is required. Task durations depend
greatly on the problem and algorithm, but 100s of milliseconds
to several minutes [3] is not atypical.

C. Other applications

Ensemble studies involving different methodologies such as
uncertainty quantification, parameter estimation, graph prun-
ing, and inverse modeling all require the ability to generate
and dispatch tasks in the order of millions to the distributed
resources. Projections of regional crop yields are computed
by running ensemble simulations over data for land cover,



soil, weather, and climate. Investigations are conducted using
the Decision Support System for Agrotechnology Transfer
(DSSAT) [4], currently run workflows of 480,000 tasks each
as composed by Swift. Future DSSAT runs covering additional
crops and near-global land area, and intercomparing larger
numbers of scenarios will require as much as two orders of
magnitude more CPU time per model run and an order of
magnitude more models, almost of all which will be structured
as many-task computations. Regional watershed analysis and
hydrology are investigated by the Soil and Water Assessment
Tool (SWAT), which analyzes hundreds of thousands of data
files via MATLAB scripts on hundreds of cores. This applica-
tion will utilize tens of thousands of cores and more data in the
future. SWAT is a motivator for our work because of the large
number of data files. Biomolecular analysis via ModFTDock
results in a large quantity of available tasks [5], and represents
a complex, multi-stage workflow.

III. BACKGROUND AND RELATED WORK

Swift [6] is a parallel scripting language for programming
highly concurrent applications in parallel and distributed en-
vironments. The language is implicitly parallel with deter-
ministic semantics that aid understanding, debugging, and
reproducibility.

The work described here addresses these motivations by
solving a fundamental limitation of the previous Swift imple-
mentation. Previously, Swift code was evaluated using multiple
threads on single centralized node to coordinate external tasks
running on (many) additional nodes. While Swift has been
used on large clusters, its maximum task dispatch rate is less
than 500 tasks per second, and its available memory is limited
to that of a single node.

To overcome these limitations, we reimplemented Swift
with a new compiler and runtime, together called Swift/T, that
allows arbitrary numbers of nodes to cooperate in evaluating a
Swift program. Swift/T’s innovations are scalable load balanc-
ing, distributed data structures, and dataflow-driven concurrent
task execution.

The productivity benefits of coordinating high-performance
subroutines with scripting has been promoted in the past [7],
in particular for HPC applications [8].

The idea of using dataflow to coordinate sequential tasks
has been termed macro-dataflow [9]. Data-Driven Tasks [10]
supports data-dependent execution of tasks on shared-memory
systems within the Habanero Java language. run command-line
programs in parallel. CIEL [11] is an execution engine, with
a corresponding dataflow scripting language, Skywriting, that
also runs tasks as external processes.

Dataflow programming models for HPC applications have
been a topic of interest for several groups [12]. Tarragon [13]
and DaGuE [14] implement efficient parallel execution of
explicit dataflow DAGs of tasks from within an MPI program.
TIDeFlow [15] proposes a dynamic dataflow execution model,
with execution specified as a (maybe cyclic) graph of dataflow
between actors. FOX [16] aims to support dynamic and
irregular applications on exascale systems, and uses dataflow
graphs for fault tolerance. ParalleX [17] provides a program-
ming model through a C++ library that encompasses globally

addressable data and futures, with the ability to launch tasks
based on dataflow. Our work is distinguished by its focus
on task-parallel applications with moderate task granularity,
which may have challenging characteristics such as irregular
tasks, unbalanced nested loops, and/or complex data depen-
dencies. We focus on providing an expressive, simple, and
robust programming model inspired by scripting languages for
top-level application coordination.

The Asynchronous Dynamic Load Balancer (ADLB) [18]
is an MPI library for distributing tasks (work units) among
worker processes. ADLB is a highly scalable system without
a single bottleneck, and has been successfully used by large-
scale physics applications. ADLB is a core library used
by Swift/T. Scioto [19] is a library for distributed memory
dynamic load balancing of tasks, similar to ADLB. Scioto im-
plements work-stealing among all nodes, instead of the server-
worker design of ADLB. Scioto’s efficiency is impressive, but
it does not provide features required for Swift/T such as task
priorities, work types, and rank-targeted tasks.

A range of key-value stores exist, such as Dynamo [20],
memcached [21], and redis [22]. Their functionality is diverse
and varied, but none provide all functionality needed to
support Swift/T. Redis is probably the most similar with data
structures and publish/subscribe.

IV. PROGRAMMING MODEL

We seek to provide a system that allows code written by
non-experts to run at extreme scale. This goal might be infeasi-
ble in a fully general model for parallel computation. However,
we focus on many-task applications, which exhibit simpler
coordination patterns but nevertheless can be challenging to
scale up in commonly used message-passing programming
models. Scalability challenges will only become more daunt-
ing on future exascale systems where fault tolerance and power
awareness are needed. In the following, we summarize key
features of the Swift programming language and the challenges
that they pose for the design and implementation of Swift/T.

A. Hierarchical programming

We assume that much performance-critical code will remain
in lower level languages such as C, C++, Fortran or even
assembly, using threads or MPI for fine-grained parallelism.
Dataflow scripting provides a powerful mechanism for coordi-
nating these high-performance components, as it enables fault-
tolerance, dynamic load balancing and rapid composition of
components to meet new application needs. In Swift, each
lower-level component is viewed as a black box with well-
defined inputs and outputs. Parallelism is derived by executing
these components as parallel tasks.

B. Implicit parallelism

Swift makes parallelism implicit, similarly to other dataflow
programming languages such as Sisal [23] and Id [24]. When
control enters a code block, any Swift statement in that
block can execute concurrently with other statements. This
concurrent execution is feasible because of the functional
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Fig. 4. Schematic of Swift/T usage. Swift scripts are compiled by STC into
Turbine code executed by the Turbine runtime

nature of Swift, where we avoid mutable state and use write-
once variables pervasively to schedule execution based on data
dependencies. Each operation, down to basic arithmetic, can
be realized as an asynchronous task, eligible to be executed
anywhere in the distributed-memory computer. This unifor-
mity simplifies language semantics. It is also powerful: any
valid Swift expression can appear in any expression context,
and thus, for example, an array index can be computed based
on the result of a long-running task without any special effort
by the programmer. Swift/T ensures that, in all circumstances,
work is eligible to run as soon as data dependencies are met,
so that all meaningful concurrency present in a user script is
retained.

C. Determinism by default

In order for implicit and pervasive parallelism to be man-
ageable we need a simple model for language semantics. It has
been argued [25] that parallel languages should have a deter-
ministic sequential interpretation for most language features,
with non-determinism only introduced through explicit non-
deterministic constructs. All core data types in Swift, including
arrays, are guaranteed to be deterministic and referentially
transparent: that is, querying the state of variable x, or any
copy of x with operation f always returns the same result,
regardless of where f(z) is in the program — even in the case
of operations that insert data into an array. Supporting deter-
minism in conjunction with Swift/T’s distributed evaluation
has been a major challenge.

V. ARCHITECTURE

The Swift/T architecture consists of two software compo-
nents: the Swift-Turbine Compiler (STC) and the Turbine
scalable runtime. Their usage is shown in Figure 4. STC
compiles the user Swift script to the Turbine code that is
launched as an MPI program with the Turbine runtime system.
Turbine was designed to provide efficient support for the Swift
data type and dataflow execution model. The Turbine runtime
has a library API, with STC generating Turbine code that calls
into Turbine through this APIL.

A. STC compiler architecture

The STC compiler comprises a Swift front end, a series
of optimization passes, and a Turbine code generator. The
front end of the compiler parses a Swift program, type-
checks it, performs dataflow analysis to detect some common
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Fig. 5. Architecture of Turbine runtime: Engines evaluate Swift language
semantics; workers execute leaf task applications

errors, such as unassigned variables (important because they
can cause deadlocks in Swift), and then generates the Swift-
IC intermediate representation. Swift-IC is flatter than Swift
code, broken down to individual Turbine operations, which
simplifies further analysis and optimization of the program.
We have found it to be a useful representation for optimizing
distributed dataflow programs.

B. Turbine

The implementation of Turbine has been described previ-
ously [26], but we present key features of the system here for
completeness.

1) Turbine: Execution model: Turbine enables distributed
execution of large numbers of user functions and of control
logic used to compose them. Turbine programs are essentially
MPI programs that use the ADLB [18] and Turbine libraries.
Thus, they can run on any system supporting MPI and can be
analyzed using MPI tools such as MPE [27].

Turbine requires the compiler to break user program code
into many discrete fragments, to enable all work to be load
balanced as discrete tasks using ADLB. These fragments
are either user-defined leaf tasks, such as external compiled
procedures or executables, or control fragments for dataflow
coordination logic. We refer to an invocation of a fragment,
combined with input and output addresses, as a task. Turbine
engines execute control tasks, while workers execute leaf tasks,
as shown in Figure 5.

Turbine tasks are atomically scheduled and execute without
pausing or blocking, similar to codelets [28], but with higher
granularity. Execution of a Turbine control logic fragment may
produce additional control fragments that are redistributed via
ADLB.

Turbine must track data dependencies between tasks in order
to know when each is eligible to run. Turbine provides a
globally-addressable distributed future store (see § V-B2, [26]),
which drives data-dependent execution and allows typed data
operations. A task becomes ready once its data dependencies
have been satisfied. Small control functions and arithmetic leaf
tasks are executed locally to reduce overhead; other tasks are
distributed via ADLB. Each task is represented as a binary
string containing the fragment to execute, addresses of global
input and output data, and serialized scalar values. When a
task runs, it fetches its input data, executes, then produces
output data, notifying the Turbine data dependency engine,
which rapidly releases newly-runnable work.



2) Turbine: Distributed future store: Turbine’s distributed
future store is used to pass data and to track data depen-
dencies between tasks. The data store was implemented for
this work as an additional ADLB service. Primitive data
types include 64-bit integers, double-precision floating point
numbers, strings, file references, and binary objects (blobs).
Turbine provides write-once variables for these types, which
are used as futures [29] for output of asynchronous tasks. A
single data structure is provided, the container, an associative
array. Every Turbine data item starts off in an open state, and
only once the value is final (i.e., a write-once variable has
been written, or a container has had all values inserted), is
it switched to the closed state. Each data item has a unique
64-bit ID, which is hashed to find its location (an ADLB
server), allowing any node in the cluster to access the data.
Turbine provides containers that reside on a single data server,
but a scalable distributed container abstraction is provided by
distributing the contents across many single-node containers
by key.

C. Turbine as a Swift runtime

The basic Turbine system just described provided many
primitives needed for a Swift runtime, but implementing
the full language efficiently and scalably required additional
runtime primitives and techniques, described in this section.

To work as part of a scalable Swift runtime, the store must
enable two key properties (see § IV): high concurrency and
determinism. Data operations must folerate and enable high
concurrency by allowing concurrent execution of tasks with
shared data and by avoiding extended pauses of tasks. In
particular, having tasks suspending waiting for other tasks
to perform operations would not interact well with our non-
preemptive task dispatcher: deadlock is the worst case, poor
utilization more likely. Operations must also provide strong
enough guarantees for STC to be capable of generating correct
deterministic Turbine code. Our definition of determinism is
not completely strict, in that while in the case of a correct
program in the deterministic core of Swift, only the order
of side-effects such as logging varies, in cases of invalid
operations, such as writing a write-once variable twice, an
error will be detected but the exact error can vary.

Each execution of a Swift function is realized as the execu-
tion of one or more Turbine tasks. Computationally intensive
non-Swift functions such as compiled functions or command-
line applications execute as Turbine leaf tasks, while control
flow in the Swift language is implemented using Turbine
control tasks. Turbine tasks never wait for synchronization
with, or data from, another task. If, as is often the case, control
flow in a Swift function requires multiple waits for data, that
Swift function must be compiled to multiple control fragments.
We use Turbine’s data dependency tracking to launch each
fragment at the correct time.

D. Swift/T extension functions

Since Swift/T is a many-task computing language, making
external code callable from Swift is crucial. Currently we
support calling C and C++ functions from a Swift script, by

using SWIG [30] to automatically generate wrappers for C
modules, then writing a Swift/T wrapper function to marshal
data to and from the Turbine data store. Fortran has been
supported by automatically generating a C++ wrapper through
FortWrap [31]. Wrapped code can then be made into a Swift/T
module and reused in any scripts. For example, we have made
modules for the applications evaluated in the performance sec-
tion and the BLAS library. The BLAS module was developed
via CBLAS. As an example, the Swift header definition for
ddot (dot-product two vectors of doubles) is formulated as
follows (note that Swift/T floats are double precision):

1 (float z) blas_ddot (int N, float X[], float Y[])
2

3 blob x = blob_from_floats (X);

4 blob y = blob_from_floats(Y);

5 z = blas_ddot_blobs (N, x, y);

6|}

7

8 (float z) blas_ddot_blobs (int n, blob x, blob y)
9 "cblas" "0.0.1" "cblas_ddot";

Thus, the user may call this function with automatic type
conversion or, if the user already has pointers to the C-
formatted double arrays, directly with the call to the actual
Swift/T leaf tasks, blas_ddot_blobs (), which links to
the C function cblas_ddot (). While our intended user
function time granularity is much higher than ddot (around
10 seconds), this illustrates how external library routines may
be called as leaf tasks from Swift/T programs.

VI. PERFORMANCE

To demonstrate the practical utility of our implementation,
we carried out multiple performance tests. All tests were
performed on the IBM Blue Gene/P (BG/P) and Blue Gene/Q
(BG/Q) systems at Argonne National Laboratory. BG/Q runs
were done on a prototype BG/Q rack. Measurements were
made by extracting events from MPE logs.

The BG/P is organized in 4-core nodes. Each 64-bit Pow-
erPC 450 core runs at 850 MHz; each node has 2 GB RAM.
The BG/P network is a bidirectional 3D torus; each link
has bandwidth 425 MB/s and latency < 1lps. The BG/Q is
organized in 16-core nodes. Each 64-bit PowerPC A2 core
runs at 1.6 GHz; each node has 16 GB RAM. The BG/Q
network is a bidirection 5D torus; each link has bandwidth 2
GB/s and latency < 1us.

We selected four cases for measurement: three application
patterns and a non-trivial, real application. The benchmarks
measure task management at large scale and raw performance
for short tasks. The application case evaluates an application
that combines a parameter sweep with iterative optimization,
and has longer leaf task run times.

A. Application patterns

We selected three common application patterns to mea-
sure Swift/T’s ability to manage a large-scale system and
rapidly launch tasks on newly released processors. While these
benchmarks focus on STC compiler-processed loops, previous
results have been reported on hand-coded Turbine loops [26]
and STC compiler-generated deep, distributed function call
stacks [32].
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foreach i in [0:N-1] {
A[i] = £(1);
31}

S5}

a) Independent tasks

foreach i in [0:V-1] {

1
2 foreach j in [0:V-1] {
3 foreach k in [0:V-1] {
4 foreach m in [0:V-1] {
5 int r = £(i, 3, k, m);
6 1}
b) Nested loops
1 | A[0][0] = 0;
2 | foreach i in [1:N-1] {
3 A[i1]1[0] = 0;
4 A[O0][1] = O;
5
6 | foreach i in [1:N-1] {
7 foreach j in [1:N-1] {
8 A[i][3] = £(A[i-1][3-11,
9 A[i-111([3],
10 Ali][3-11);
|

c) Wavefront

Fig. 6. Application patterns for performance evaluation
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Fig. 7. Task completion events for batch of independent tasks (BG/P)

1) Simple loop pattern: We first evaluate Swift/T’s ability
to launch and manage a simple bag-of-tasks application, shown
in Figure 6 a), at large scale. As shown, this application simply
executes leaf task £ () N times. Each invocation of £ ()
emulates a fixed amount of sequential computation time on
a Turbine worker.

First, we illustrate the behavior of this script at a high level.
A Swift/T run was configured with P = 4,096 processes of
which 4,032 are workers; 64 are control processes. We set [V
to 80,640, meaning that each worker executes £ () 20 times.
The computation duration D for £ () is set to 10 seconds.

Results are shown in Figure 7. Each completion of f ()
increments the cumulative number of leaf tasks completed. As
desired, the accumulation over time resembles a step function
in which there is a short amount of time between steps,
indicating that workers are kept busy.

By measuring the total run time, 7', a utilization result for
this case may be obtained as
N x D 1
PxT’ 1
This formula penalizes Swift/T for the use of control pro-
cesses, which do not perform leaf task work. The utilization
for this case is 96.3%.

Second, we scale up both problem size and computer system
size in order to evaluate our ability to manage a large number
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Fig. 9. Task rate result for nested loops pattern (BG/Q)

of leaf tasks on many processors. We execute the same script
on successively larger problems and for successively larger
processor counts. We set D = 100 seconds. For each process
count P, the number of control processes C = P = 64 and
the number of worker processes is W = P — C. The number
of leaf task invocations is set to N = W x 2; that is, each
worker executes the function twice for a total of 200 seconds
of work. Utilization is simply:

utilization U = @ 2)

T

Results are in Figure 8. At the second largest scale, 65,536
cores, the utilization remains high at 94.57%. At the largest
scale, 131,072 cores, the utilization drops to 82.03%. This
performance is comparable to that reported for ADLB [18].

2) Nested loops pattern: Our second benchmark, like the
first, creates a large number of fine-grained tasks, but does so
using a quadruple-nested rather than a single foreach (see
Figure 6). Thus, it tests a different aspect of Swift/T control
logic, neglecting the array insertion but storing an output
variable. Figure 9 shows the measured task rates. In each case,
the number of engines and servers was set to C' = P =+ 2 and
script variable V' was set such that each server processed at
least 2,000 tasks. £ () simply retrieves the script variables and
outputs their sum (no artificial delay).

This test was run on the BG/Q. The plot shows a perfor-
mance peak at 1,024 cores of 66,448 tasks/s.

3) Wavefront pattern: The wavefront pattern is relevant for
many applications [33]. In this framework, a matrix is filled in
by results computed by calling a function on three inputs that
are adjacent cells in the matrix. In our implementation, the
value in each cell is the sum of the entries to its left, top, and
top-left. The arithmetic runs on a worker process and runs for
essentially O seconds. Thus, the test evaluates how fast Swift/T
can produce and distribute leaf tasks in this pattern.
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As shown in Figure 10, the wavefront pattern scales on
the BG/P well up to 1,024 cores at 832 tasks/s. While real
applications are expected to compute more than a simple
sum, it demonstrates that applications with relatively short task
computation time but complex coordinating logic can benefit
from Swift/T.

B. Application: SciColSim

We describe here an application test of the new Swift/T
implementation. The application implements the SciColSim
simulated-annealing optimization of a social network graph
model of scientific collaboration, enabling a multi-core work-
station application to be run on the BG/P.

We conducted performance studies for the SciColSim
Swift/T application as follows. The SciColSim Swift script
(summarized in Figure 3) has 303 lines, replacing a similar
amount of OpenMP C++ code. This dataflow script performs
simulated annealing. The SciColSim leaf task, evolve (),
is a graph analysis routine written in C++. The run time
distribution for evolve () is shown in Figure 11 (this data
is extracted from the 4,096-core use case below). Each bar
corresponds to the “bucket” of run times that fell below that
run time but exceeded the previous bucket. As shown, 55%
are between 55 and 60 seconds, 45% are distributed in the
range under 55 seconds.

Figure 12 shows leaf task load over time for the 4,096 core
case. We see that Swift/T rapidly evaluates the annealing script
and launches leaf task execution on all workers within 5.6
seconds; this time includes all job startup. A “long tail” effect
is seen as some long-running tasks complete [34].

Figure 13 shows utilization over time at scales up to 4,096
cores. Each system size executes a correspondingly larger
SciColSim workload. As shown, each case has utilization 93%
or higher (disregarding the long tail effect). This result shows
that Swift/T can deliver computing cycles to real application
codes as coordinated by complex application scripts.

1,500

1,000

leaf functi

500

]

] 25 50 75 100 125 150 175 200 225 250 275

time (seconds)

Fig. 12.  SciColSim processing load on 4,032 workers (BG/P)
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This tail, problematic on real runs, is solved by using ap-
plication knowledge to assign higher task priorities to longer-
running tasks. Figure 14 shows how using priorities eliminates
the tail effect, resulting in an earlier exit. Task priorities are
an ADLB feature elegantly exposed in the Swift/T language.

VII. FUTURE WORK

We are aware of many potential optimizations to improve
Swift/T performance, such as caching, relaxing consistency,
and coalescing Turbine operations at compile or run time.
Garbage collection is required to support longer running jobs
that create more global data. We intend to explore alternative
load balancing methods and data-aware scheduling, and expect
that advances in this area will yield many-fold improvements
to Swift/T’s current scalability.

Many system-level features remain to be explored and im-
plemented. The dataflow-driven task-parallel execution model
presents opportunities to provide fault tolerance and power
awareness at the runtime system level, which we have yet to
exploit. We also plan to integrate Swift/T with a MosaStore
intermediate file system [35] deployed on the compute nodes
to support efficient workflow-aware file access [36] and cache-
resident program executables as tasks.
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Fig. 14. SciColSim utilization trace on 30 workers for 32 separate annealing
processes, each 5 cycles long, with 5-way parallelism in each process



VIII. CONCLUSION

The novel contribution of this research is the design, imple-
mentation, validation, and evaluation of Swift/T, a completely
new implementation of the implicitly-parallel Swift language
for high-performance computers. This work has yielded a
practical dataflow-based programming model for productively
implementing the upper-level logic of complex many-task
applications on emerging extreme-scale platforms. The prin-
cipal innovation of Swift/T is its implementation of highly-
distributed execution for parallel dataflow-based semantics
through the integration of a scalable task distribution model,
a distributed data store, and requisite compilation techniques.

Performance results show good utilization for realistic work-
loads at task rates that far exceed previous systems. Several
application classes which can benefit from this programming
model on extreme-scale systems were discussed, and specific
examples were provided and cited. Swift/T has been used to
develop and execute highly scalable real-world applications
through parallel composition of C/C++/Fortran functions.
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